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Abstract

This document introduces a draft specification for a solver abstraction designed
for use with finite-element applications. The solution services outlined here are
implemented using alayered computational architecture that isintended to
simplify the task of adding equation solving services to existing and new finite-
element analysis codes. The basic motivation for introducing this solver
abstraction isto simplify the task of developing and supporting large-scale
finite-element analysis software, and especially parallel applications.

The solution services are outlined in brief, and then successively refined until
each aspect of their architecture (both algorithms and data) is made concrete.

The solver interface presented is intended to provide sufficient flexibility so that
It can be used in awide variety of finite-element applications in science and
engineering. In addition, it is designed to hide the details of the equation
solution process so that new hardware and software technology can be
accommodated without disturbing the parent finite-element analysis program.
Finally, it isintended to be sufficiently easy to use so that its installation within a
finite-element application will be relatively painless.

* Computational Mechanics Project, Dept. of Mechanical Engineering, California State University Chico.
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Caveats

This document accompanies version 0.07 of the header file detailing the proposed
interface between afinite-element (FE) program and its embedded linear algebra (LA)
solver. Itisadraft-quality description of the high-level concepts underlying this
interface, and hence subject to change based on input from the FE devel oper
community.

Thereislittle detail in this current document, as the decision has consciously been
made to avoid substantial detail until the specification is finalized — upon adoption of
the interface as a (relatively) static entity, more examples and accompanying
documentation will be provided.

In particular, al of the pictures used to diagram concepts inherent in the proposed
specification are simplified by representation in only two space dimensions. This
choice is merely to make the illustration process easier, and there are no limitations
within the proposed finite-element interface that limit its utility in the three-
dimensional case (in fact, the solver interface is independent of the spatial dimension
of the problem being solved). The process of generalization to 3D isleft to the
reader, asleast in the current draft stage of this document.

The current version of the interface is specifically oriented towards sparse matrix
methods in general, and Krylov iterative solversin particular. The interfaceis
intended to be extensible to other linear and nonlinear solution algorithmsin the
future, but they are not the guiding principles of the present implementation.

Finally, the order in which the material is presented represents a successively more
refined view of the problem of providing FE equation solution support. Thisleadsto
the problem that detailed definitions of terms arise later rather than sooner in this
document, so that the important concepts of motivation and calling architecture are
given only in agenera sense.

Motivation

There are many motivations for the development of the current FE-LA interface, and
most are based on the desire to provide a useful abstraction of the wide variety of
solver services required by current and future finite-element codes. The following
enumeration highlights some of the most important motivating principles.

Simplicity

Solving sparse finite-element equations (and especialy in aparallel setting) isa
complicated process that rests on a small set of relatively simple concepts. Element
matrices must be formed and assembled into a particular sparse matrix format,
boundary condition data must be embedded into the resulting partially-constructed
solution, various types of constraint relations must be appended to the system, and
the resulting system must be solved using a particular algorithm from a bewildering
variety of possible numerical schemesfor solving sparse linear systems.
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The basic idea behind the interface is to separate the physics (represented by the FE
calculations) from the algebra (represented by the processes mentioned above), in
order to simplify code development for FE analysis. Tasks such as assembly,
boundary-condition modification, implementation of linear constraints, and solution
services are encapsulated into alinear system of equations object, and this
packaging of data and services permits the FE developer to concentrate on the
physics instead of on the linear algebra.

Physics
D ecormpasition of Probl em
Farrnation of Element Malrices
O exiveation of Element Stresses

A
Allocali o of Sparse Maltrx Storage
ozt uction of Equali on Set
Solution of Systern of Equations

Finke-Element
Interface

Figure: Division of Labor With the Proposed I nterface

Furthermore, the proposed interface attempts to perform the algebraic computations
in a sequence that reflects atypical FE analysis architecture. Datathat is requested
from the FE code is passed in aform that naturally occurs in most high-performance
FE programs: for example, lists of e ement matrices are requested, with controls
provided to reflect typical dense (or packed) element matrix storage schemes used in
various FE programs. With this approach, the proposed interface requests data when
the FE program is likely to have that data available, and permitsit to be passed in a
format that requires minimal (if any) transformations of the data.

Hence the guiding principles of the interface are to request datawhen and how it is
readily available, to package servicesin aform to simplify the tasks of equation
solution (and in fact, to remove the whole issue of sparse matrix solution from the
realm of finite-element development), and to provide the “answers” in aform
amenable for subsequent use by the finite-element code.

Generality

Finite-element codes are used to solve an incredible variety of problems, and this
diversity of application often manifestsitself in adiversity of software architectures.
Some finite-element codes are designed for pure speed, so that many architectural
decisions (such asthe local order of the finite-element interpolant) are collectively
standardized over the entire problem domain. Other codes (most notably, p-adaptive
analyses, where the local element interpolation order often varies across element
boundaries) reflect amore individualized elemental approach to calculation.

The interface attempts to handle either extreme of architecture by introducing

abstractions for handling collections of elements and nodes. These abstract
aggregations can be utilized to encompass large groups of nodes and elements, or to
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degenerate gracefully to the case where data is passed one element at atime, or one
node at atime.

Furthermore, the interface is designed for parallel SPMD implementation, but the
parallel model does not preclude its efficient use in aserial (or shared-memory
parallel) computational setting. In particular, abstractions that arise from distributed-
memory parallel concerns (such as external nodes) can readily be ignored in the serial
setting, and the interface implementation will still provide substantial value to the
finite-element devel oper.

Extensibility

Just as finite-element calculations reflect a variety of computational architectures,
they also provide adiverse set of needs for solution services. The current
implementation has been designed not only to provide the lowest-common
denominator of useful solution function (namely, scalable sparse linear algebraic
solution services), but also to provide for future extensions common to current finite-
element analyses. Some of the future extensions include:

nonlinear solution services, which will require atighter coupling between the
physics and the algebra, in that the finite-element code will have to export
servicesto the solver (e.g., evaluation of element residuals),

eigenvalue computation, which will require the extension of the interface to
accommodate passing element mass matrices (and of course, some new equation-
solution control parameters) to the solver, and

multilevel solution methods, some of which can be grafted onto the interface
architecture in a straightforward fashion.

Hence, the proposed interface should be viewed as currently providing needed
baseline function that can be generalized as more extensive needs arise.

Efficiency

Certainly, one of the most important motivations for providing a FE-LA interfaceis
that of efficiency. Asnew solution algorithms are uncovered, or as new
computational architectures are developed, separating the physics from the algebra
permits greater efficiencies by hiding the details of the solution services so they can
be made more efficient without disrupting the architecture of the parent finite-
element code. Thus, one of the most important motivations behind the proposed
Interface is the desire to provide efficient solution algorithmic implementations that
can be tuned to specific FE problems, or to a given computer architecture.

Another important efficiency concern arises from the use of adaptive codes, which
require that initialization data (such as the sparse matrix realization used to assemble
and solve the finite-element equation) changes often. The use of adaptive schemes
(or at least h-adaptive techniques, where the order of the element interpolants
doesn’t change within a group of elements) for solving complicated problems leads
to the need for lightweight initialization routines, and this need is reflected in the
current interface specification and its prototypical implementation.
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Finaly, large finite-element analyses require considerable memory to run, and it is
highly desirable that the equation solution modules minimize their memory footprint.
The specification is designed (e.g., by separating initialization from loading stages) to
provide for optimal memory allocation in its production implementation.

Overall Interface Architecture

The current interface involves four separate steps that are performed in the order
given below:

Initialization

This step is used to advise the solver implementation on the overall structure of the
finite-element equations, so that sparse matrix storage can be allocated, future data-
passing needs estimated, and verification information stored for subsequent
checking. Note that the initialization step only provides the structure of the matrix,
so that particular matrix entries cannot be determined at the end of thisinitial task.

Loading

This step involves passing the particular data used to fill the data structures
constructed during the initialization process. The datato be passed here includes
such substantial demands as lists of element matrices and tables of boundary-
condition data. At the end of the loading step, the values of each nonzero termin
the sparse matrix are completely specified.

Solution

In this task, the resulting system of linear equationsis solved in a scalable and robust
manner, and in accordance with control data passed by the parent finite-element
analysis program.

Solution Return

Here, the various components of the solution are exported to the finite-element
program, in formats most natural for subsequent use in finite-element analysis.

Definitions

The following definitions describe the abstractions used in the interface specification.
It isimportant to note that these concepts represent collections of finite-element data
structures, so that data can be passed either in terms of standardized groups, or on an
el ement-by-element/node-by-node approach. It is also important to note that al
constructs related to parallel computation (namely shared and external nodes) can be
ignored in the serial case (i.e., there are zero externa or shared nodesin this case).

Fundamental Constructs

Finite-element analyses involve the construction of an interpolant that approximates
the solution of a physical problem. The finite-element interpolant is constructed
locally over subdomains (termed elements), and the local interpolants are
implemented using a collection of interpolation nodes that are located on the
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boundary of the element, or within itsinterior. The overall collection of nodes and
elements used in afinite-element analysisis termed the finite-element mesh.

There is no requirement that only a single interpolant be associated with a set of
elements, as finite-element models are commonly used to solve multiple-field
problems. For example, incompressible flow problems often require construction of a
nodal velocity field that interpolates the velocity over the problem domainin a
continuous (but not necessarily smooth) manner, and also the construction of a
pressure field that is only piecewise-continuous over each element. The former field
Is generally associated with nodes lying in or on elements, while the latter may be
associated with nodes lying entirely within elements, or with purely elemental
solution unknowns.

& pressure node [or demental DOF)
o displacemert node

)

d

A

o A

A A

i
Eiqua dratic Displacement - Eilinear Displacerm ent -
Linear Fressure Elemert Corstant Pressure Bemernt

Figure: typical field variables for incompressible flow

In addition to the nodes and elements that define the particular finite-element
interpolant, many finite-element codes permit various forms of constraints to be
enforced between different components of the mesh. A typical exampleisin
contact-impact calculations, where different mechanical components interact without
occupying the same space at the same time. The constraint equations that arise from
a precise mathematical representation of “only one object can occupy a given point
at agiventime” must be implemented within the finite-element equation set in order
for the solution to make physical sense.

Domain Decomposition

In aparallel computing environment, the problem domain is divided into subdomains
which are then associated with individual processors. This subdivision processis
termed domain decomposition, and in the setting of finite-element models,
corresponds to assigning groups of elements to various processors. The overall
process is diagrammed in the figure below. Note how the subdivision process results
In each element being mapped to a distinct processor, but that nodes lying on the
boundaries of some elements may end up being associated with more than one
processor. Such nodes that are associated with more than one processor are termed
shared nodes. Nodes that are associated with only one processor are termed |ocal
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nodes for that processor. For a given processor, the set of all nodes that are either
local or shared is termed the processor’ s active node list.
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Figure: decomposition of a domain into four processor subdomains

Active nodes

The set of active nodes can be defined as the list of all nodes associated with
elements located on a given processor. This set can be constructed by scanning all
the elements on a processor while accumulating the nodes associated with each
element into alist of distinct node ID numbers. This set is henceforth termed the
processor active node list (or in more common shorthand, the active node list).
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In addition, this notion of active nodes can be extended to consideration of an active
node list associated with aggregrations besides the obvious one of “all nodes
associated with elements lying on a given processor”. In particular (see the
fundamental definition of block given below), one very important subset of the
processor active node list isthe set of all nodes on a given processor associated with
agiven block of elements: this particular active node list plays an important role in
returning the computed solution to the parent finite-element program.

Shared Nodes

The set of shared nodes can be precisely defined as the list of al active nodes that
cannot be associated with a unique processor. Shared nodes are thus a subset of the
set of active nodes, and can be equivalently characterized as nodes that can be
found in the active node list for more than one processor. From a practical
standpoint, shared nodes are found on the boundaries of elements that lie along the
edges/faces of the individual subdomains resulting from the domain decomposition
process (as was shown in the preceding diagram for domain decomposition).

Thus, the domain decomposition carried out by the parent finite-element code
aready identifies shared nodes, hence this datais readily available for passing to the
eguation solver module. The alternative of determining the list of shared nodes
without any help from the parent finite-element code represents an extremely
complicated and expensive computational process, and avoiding this expenseis the
main reason why the parent finite-element program is given responsibility for
identifying all shared nodes.

External Nodes

External nodes are nodes that are needed on a given processor for subsequent
calculations, but are not located on that processor, either aslocal or as shared nodes.
The most common case of an external node occurs when a slidesurface constraint
crosses a processor boundary, so that (as a concrete example) a slave node located
on another processor is coupled to one or more master nodes present in a processor’s
active node list. In thiscase, al of the relevant interprocessor communications
pathways cannot be resolved simply by scanning the lists of active and shared
nodes. In this setting, the parent finite-element code is responsible for advising the
solver of the location of the external node, as thisinformation is aso generally
available to the calling finite-element program (where it is used in determining the
nodal weights that define the constraint relation’ s precise mathematical
representation).

This case of external node characterization is diagrammed in the figure below. Note
how the slave node is not present in the active node list corresponding to the
processor where the master nodes are found. Note that in this case, the slave node s
from processor 1 is an external node for processor 2, and the master nodes m, and m,
from processor 2 are external nodes for processor 1. In both cases, the calling finite-
element program bears the responsibility for advising the solver of each instance of
external nodes.
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The parent finite-element program is responsible for informing both processors of the
send/receive characteristics of all external nodes. In this example, the existence of
the constraint involving slave node s (as external to processor 2) and master nodes
m, and m, (external to processor 1) must be declared by the calling finite-element
program. This declaration process involves articulation of both the send and receive
characteristics implied by the constraint relation. In particular:

processor 1 needs to send data involving node s to processor 2, while receiving
data defined at nodes m, and m,

processor 2 needs to send data involving nodes m, and m, to processor 1, while
receiving data defined at node s.

The finite-element interface provides appropriate initialization methods so that
external nodes can be identified and categorized for both send and receive
communications. With these initialization routines performed by the calling finite-
element program, the communications requirements for handling external nodesin a
distributed-memory setting can readily be managed.

shaye node on
processor 1

G e Ly
o F S F F S F r
':.-' o e o o e o '-.:'
o £ Y £ o Y o T
':.-' o e o o e o '-.:'
G G ':_-} ':_,-' .t Lt .t D
Eletn ents from processar 1 master nodes
Oof rocessor 2
Eletn ents from processar 2

& Modes shared by
processors land 2

Figure: External (dave) node arising from slidesurface constraint
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Block

Nodes, elements and constraints thus naturally arise in finite-element approximation,
and elements are commonly derived from a generic set of elemental approximations
called an element library. Thusthereis generaly some standardization of types of
elements (e.g., the number of nodes, the number of solution unknowns to be
determined at each node) present within atypical finite-element code. This
standardization leads to the concept of a block of elements.

Block Definition
A block isacollection of elements lying on asingle processor and satisfying two
specific criteria

all elements have the same number of associated nodes, and

all associated nodes have the same pattern of solution unknowns.

The former criterion means that elements belonging to a given block have
standardized data structures that can readily be allocated: one obvious exampleis
that the element topology (i.e., the list of nodes associated with a given element) for
al elementsin agiven block can be stored in atypical two-dimensional matrix, with
each row representing the topology for a given element. In this case, all row lengths
are the same, hence the resulting data structure is readily stored in a Fortran-style
two-dimensional array.

Block Nodal Solution Cardinality

The second criteriais more subtle, as care must be taken to distinguish between
blocks where each element’ s associated nodes have the same solution cardinality
(i.e., the same number of nodal unknowns s defined at each node), and blocks where
each element has a variable solution cardinality. The former case is shown in the
figure below, where each node isidentical to all the others associated with a given
element (e.g., in athermal problem, each node has one unknown, in a2D
compressible solid mechanics problem, each node has two unknowns, etc.).

O O
@)
O O
Lagrange Bilinear Serendipity Lagrange
Quadrilateral Quadratic Quad Biquadratic Quad

Figure: Generic Elements from Blocks with Constant Nodal Solution Cardinality
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When solving multi-physics problems (such as a couple solid-thermal analysis), the
different solution fields are not necessarily determined on identical sets of nodes. In
fact, in some coupled problems, solvability conditions required for convergence of
the FE analysis often require that different orders of approximation be utilized for
the various solution fields present in the computational analysis. In this case, the
notion of a constant solution cardinality for each node in a given element must be
jettisoned, to be replaced by alist of solution cardinalities, each associated in order of
the local numbering of the element topology.

Some examples of such varying solution cardinality elements are shown below: the
elements on the right and left are commonly used in analyses of incompressible
materials, where the higher-order interpolant (the bilinear and biquadratic node sets,
respectively) are used to interpolate the displacement field, and the lower-order
interpolants (the constant and linear fields, respectively) are used to estimate the
piecewise-discontinuous pressure field that often accompanies incompressible
anayses. The middle element is commonly used in porous-media-flow problems and
thermal/solid analyses, where both solution fields must be interpolated in a
continuous manner (though in this case, with different-order interpolants).

O O
X
X @)
X X
O O
O Bilinear O Quadratic O Biquadratic
X Constant X Bilinear X Linear

Figure: Generic Elements from Blocks with Variable Nodal Solution Cardinality

Once the notion of anodal solution cardinality pattern is admitted, then care must be
taken to utilize a consistent local and global numbering scheme so that the correct
local nodes (i.e., nodes associated with a given element) can be identified with their
respective nodal solution parameters as the finite-element equations are assembled,
solved, and the solution components returned to the parent finite-element analysis.

This numbering consistency issueis easier to grasp by using asimple example: first,
consider the local numbering scheme imposed on the mixed-order interpolant defined
over the element pictured below, where there are two coupled fields:

avector displacement field utilizing a quadratic eight-node serendipity element
with two unknowns per node, and

ascalar potential field (e.g., temperature) defined on a superimposed bilinear
L agrange element with one unknown per node.
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The table given in the figure gives the solution cardinality in terms of the local
element numbering: this latter numbering scheme begins at the upper-right-hand
corner of the element, proceeds around the corner nodes (where both displacement
and potential are interpolated) in the usual positive rotational sense, and then winds
around the element boundary a second time to catalog the mid-side nodes, where
only the two displacement vector components are interpol ated.

2 1
g’ O FE approximation with two unknowns per node
X FE approximation with one unknown per node
6 8
7 Node 1 2 3 4 5 6 7 8
o Cardinaity 3 3 3 3 2 2 2 2
3 4

Figure: Local Node Numbering for Element with Variable Solution Cardinality

The reader should insure that the table of “nodes and cardinality as a function of
local node number” is thoroughly understood before proceeding on to the next
figure. Inthisfigure below, a coarse two-dimensional mesh is shown with the usual
numbering arrangement obtained by proceeding consecutively across the least mesh
dimension (in this case, five node in the vertical direction). Asinthelast figure,
corner nodes possess three unknowns per node, with mid-side nodes having two
unknowns per node. Thus the darker circles represent nodes with one additional
solution component to be interpolated at each node.

5‘ 80 13' 160 21' 240 29‘
R ) . G- e
P11 50 109 =0 9
2() 100 ;|_8O 26O
OO 1O 79 0@

Figure: Sample Mesh with Variable Solution Cardinality

The table of element topology is given in the figure below. Note that the first four
columns represent the topology induced by the counter-clockwise numbering of the
corner nodes for each element (e.g., for the first element in the lower-left corner, these
nodesare 1, 9, 11, and 3), and the last four columns of the topology array represent
the counter-clockwise numbering of the mid-side nodes (e.g., for the first element,
nodes 6, 10, 7, and 2). Such consistency in local nodal numbering for every element
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in agiven block is absolutely necessary in order that the processes of stiffness matrix
alocation, element matrix loading, and solution return be properly implemented so
that the finite-element analysis and the solver module agree on the view of what
physical problem is being solved.

< Associated Nodes >

1 9 11 3 6 10 7 2

3 11 13 5 7 12 8 4

9 17 19 11 14 18 15 10

117 19 21 13 15 20 16 12
17 25 27 19 22 26 23 18
19 27 29 21 23 28 24 20

Elements

Figure: Permissible Element Topology for Mesh with Variable Solution Cardinality

Block Structurein the Finite-Element Mesh

In practice, blocks of elements are collections derived from the same generic type in
an element library. For example, agroup of four-node 2D elements with two
displacement components at each node can be considered to form a block, while a
group of four-node 2D elements, some with (vector) displacement interpolants and
others with a (scalar) temperature interpolant, cannot be considered as a block.

Another case of block structure can be developed by considering the transition of a
higher-order interpolant into alower-order approximation. In the figure below, there
are three blocks:

the set of eight-node serendipity quadratic quadrilaterals on the left,
the intermediate region of five-node transition elements, and
the set of four-node bilinear quadrilaterals on the right.
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Figure: various blocks present in atransition region

From the standpoint of the finite-element developer, blocks may be further
subdivided into smaller classes based on physical constructs, such as material type or
number of constitutive parameters. It isimportant to note that these physical
distinctions are not imposed by the solution module, however, so it is not necessary
to propagate such distinctions into the solution services tasks. The only issues
involved in the definition of a block arise from purely elemental topological and
solution cardinality concerns—if it ssimplifies the overall analysis process by grouping
disparate physical materials into a block of elements, then the FE developer should
do so. If such aggregation complicates life for the developer, then physical
distinctions should be propagated between groups of elements that could be
otherwise be encapsulated into a single block.

As an example, consider the mesh shown below, which is composed of two distinct
materials, but one underlying type of elemental approximation. The region can be
decomposed into two blocks, mirroring the material discontinuity at the center of the
mesh, or joined into one block for the process of passing datato the solver. The
particular choice is best |eft to the FE devel oper, to be made on the grounds of
whatever is simplest to implement.
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Figure: Problem with two natural blocking strategies

Block Structure Pathologies for Further Study

In many multi-physics problems, different regions of the solution domain may utilize
different numbers of solution components. For example, a solid mechanics problem
over ageometric domain may be overlaid by athermal analysisthat is coupled to the
solid analysis over a smaller subdomain where the temperature response is of
particular interest. Because the two overlapping regions possess different solution
cardinalities, they must be mapped to two (or more) separate blocks of elements.

Once multiple blocks possessing different solution cardinalities are permitted in a
finite-element mesh, the possibility arises that the nodes along the interfaces between
blocks may inherit different views as to the number of solution parametersto be
interpolated along this block-contact interface. As a concrete example, consider the
figure below, which represents a junction of two blocks:

the block on the left, where displacement is interpolated over nine-node
L agrange biquadratic elements, and

the block on the right, where displacement is interpolated over similar nine-node
L agrange elements, but a scalar potential field is overlad on the displacement
mesh, using four-node Lagrange bilinear elements.

From the standpoint of determining the displacement field (i.e., the portion of the
solution that is common to both blocks), the two mesh components are
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mathematically conforming, and the element matrix contributions to the displacement
strain energy functional can be assembled readily by the solver. But the nodes
present in the right-hand block for approximating the potential field have no
analogous component in the left-hand block, and some means for rectifying this
inconsistency must be found.
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O § O § O O O O
O O O <> O O O
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O Lagrange Biguadratics with O Lagrange Bigquadratics with
2 Unknowns per Node 2 Unknowns per Node

X Lagrange Bilinears with
1 Unknown per Node

Figure: Solution Cardinality Disagreement at a Block Interface

With the current FE-LA solver interface, this multiple-block structure can be modeled
by using distinct nodes for the boundaries of the two blocks, so that the nodes at
either ends of the arrows in the figure above can be tied together (for their
displacement components, at least) using Lagrange multiplier or Penalty constraint
conditions. The thermal problem imposed on the right-hand block must have
appropriate boundary-condition data applied to the nodes along the block interface,
but this task is |eft to the finite-element modeler. Thus the current FE-LA solver
specification permits this multiple-local-field modeling scheme, but it does not
explicitly encourage it in practice.

If such locally-defined variable-solution-cardinality meshes are to be utilized most
effectively using the FE-LA specification (and if these problems are common enough
to warrant such a generalization), then some means to permit joining such disparate
blocks should be found without requiring the analyst to tie the various components
together with constraint conditions. Currently, the plan is to identify such regions
where different blocks impose mutually exclusive definitions of nodal solution
cardinality on the nodes lying along the block-contact boundary, and then look for
nodally-defined data (such as boundary-condition specifications) during the
initialization and load steps to determine whether these mutually exclusive
cardinality definitions are to be considered as errors in data-passing (and hence
signaled as exceptions) or as artifacts of the physical modeling process (and hence
dealt with appropriately in the construction and solution of the system of equations).
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There are good reasons for extending the interface specification to encourage such
block-contact problems. Among the most important of these is the fact that the
problem mentioned above results in a positive-definite matrix when block-interface
conditions can be dispensed with by reusing the same node numbering along the
block-contact region, but becomes indefinite when a Lagrange multiplier constraint
set is used to join the blocks using distinct node numbering along the block contact
boundary. Since indefinite problems can be much more difficult to solve viaiterative
linear algebraic schemes (such as scalable Krylov solvers), imposing such constraints
as a modeling technique may have unpleasant ramifications for the linear algebra
modules called by the finite-element analysis. Therefore, ameans to join blocks
without explicit constraint equations may be an excellent idea for study in future
versions of the FE-LA solver interface specification.

Element Sets

Blocks represent large collections of elements located on a given processor, and it is
common for one block to span the entire processor domain. From the standpoint of
passing data to the solver in a parallel setting, a more lightweight entity than a block
must be developed, and that construct is termed an element set.

Element Set Definition

Element sets are subgroups of elements that comprise element blocks. An element set
can range in size from asingle element up to the list of all the elements on a given
processor. Because element sets are contained within blocks, they also satifsy the
two defining block criteria, namely:

al elements have the same number of associated nodes, and
all associated nodes has the same pattern of solution unknowns.

Element sets are simply the means to the end of passing the data that defines a block
of elements that islocated on a given processor. In practice, two important specific
examples should be mentioned:

the case where each element set has exactly one member, which corresponds to
passing element-based data to the solver on an element-by-element basis, and

the case where elements are grouped to fit within a high-performance memory
hierarchy (i.e., a cache of fast RAM with a well-defined size).

This latter case of element set is commonly termed aworkset. Because element sets
are used to decompose portions of blocks located on a given processor, the
following criteria must also be satisfied:

al elementsin an element set are local to the same processor, and

all nodes associated with the collection of el ementsin an element set are either
local to this processor or shared by this processor.
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The figure below shows atypical decomposition of a block of elements that spans
two processors into four distinct element sets. Note that the number of elementsin a
set may vary substantially, depending upon the underlying software architecture of
the parent finite-element code, or on the particular CPU characteristics (e.g., the
amount of cache memory on each processor) of a given computer.
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Figure: decomposition of two-processor block into four e ement sets

The element sets on a given processor satisfy the following criteria

the union over all the element sets of all the elements contained in the collection
of element setsisthe entire list of elements associated with the processor, and

the intersection over all the element sets of all the e ements contained in the
collection of element setsis empty.

Furthermore, the union over all element setsand over all the processors yields the
complete list of all elementsin the problem domain, and the intersection over al
element sets and all processorsisalso empty. All of these criteriafollow directly from
the base construct of domain decomposition.

Element Set Data-Passing For mats

There are many ways to store the element data that forms the bulk of the system of
finite-element equations. In particular, many self-adjoint problems result in symmetric
stiffness matrices, and this symmetry can be utilized to reduce the memory required to
pass element data across the finite-element/sol ver interface (though it should be
noted that symmetry of some or all of the element matrices may not always imply
symmetry of the resulting finite-element matrix: asymmetries may result from some
specialized types of constraint conditions and from having any of the element
matrices be non-symmetric — this latter case commonly arises from material
nonlinearities arising when non-associated plasticity models are utilized for
constitutive response).
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Because it is desirable to achieve the reduced memory footprint that symmetric
element stiffness matrices imply, the following set of element formats will be
supported by the finite-element/solver interface (note that other formats may be
added in the future, depending upon demand):

dense unsymmetric storage, where the element matrix is stored without any
regard for symmetry,

packed upper-symmetric storage, where the upper triangle of the element stiffness
matrix is stored in a row-contiguous manner,

packed lower-symmetric storage, where the lower-triangle of the element stiffness
IS stored in a row-contiguous manner, and

Fortran-style storage, where constant column-length offsets simplify the task
(relative to C/C++, at least) of decomposing the element-set-based matrix listsinto
individual element matrices.

11 2| 3| 4] 5| m 11 2| 3| 4] 5| m 1
m+1] m+2 m+3 m+1] m+2 m+3 2 3
415

Figure: Base Formats for Element Matrix Storage

Other formats (such as general sparse element matrix storage, for problems with large
numbers of solution components at each node, and where the solution coupling is
weak or non-existent, resulting in many trapped zeros in the element matrices) will be
added if they are technically feasible and commonly used.

Another important issue in terms of element matrix formatsisto identify standards for
passing element arrays associated with blocks that utilize local elemental unknowns
(such as the element-based pressure fields that have heretofore been idealized as
being associated with nodes lying within the element, but which can alternatively be
viewed as solution unknowns that are defined locally on each element without any
idealization using internal nodes). The fundamental idealization used by the current
FE-LA solver interface specification is that nodal equations occupy the first
elemental equation positions (namely, the lowest-numbered rows and columns), while
elemental unknowns occupy the largest-numbered rows and columns.

As a specific example, consider the twelve-node (nine displacement nodes plus three
pressure nodes) biquadratic displacement/linear pressure element presented in the
“Block Nodal Solution Cardinality” section above. This element can alternatively
be idealized as possessing nine nodes, each with two displacement unknowns, and
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three scalar elemental unknowns that define alocal (element-based, discontinuous
across element boundaries) linear pressure field. This element is thus associated with
element matrices that have twenty-one rows and columns. eighteen rows arising from
the nine sets of two displacement components, and three rows arising from the local
linear pressure field.

Using the standardization given above, the element matrices for these mixed elements
would take the form given in the diagram below:

A
Arising from nodal
solution components
” Arising from elemental
% solution components
9 Arising from node-
element coupling terms
g 5
o
(92
< >
18 columns 3 columns
Figure: Sample Storage for Mixed Element with Local Element Unknowns
Node Sets

Just as elements are grouped into aggregrate generic structures termed element sets,
nodes can be grouped into similar structures that are called node sets. Whenever a
group of nodes has some underlying generic similarity, such as a uniform boundary
specification, it becomes a natural candidate for encapsulation into anode set. Asin
the case of element sets, node sets can readily degenerate down to single members,
which corresponds to passing nodal information on a node-by-node basis.

The main distinction between an element set and a node set is that while each
element on a processor must occur in some particular (and distinct!) element set, few
such constraints apply to the union or intersection of the node sets. In fact, the only
cases where nodes must be passed via node set aggregation occur when nodes
possess boundary condition data, or are shared among processors, or are external
nodes for use in constraint relations. For all other active nodes, no additional data
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needs to be passed to the solver (except, of course, these nodes must occur
somewhere in the element connectivity data used to create the active node list).

The assumptions present with regard to node sets on a given processor thus take the
following form:
the union over all the nodal sets of all the nodes contained in the collection of
node setsis the list of nodes that either have boundary data defined, or those that
involve communications with another processor (including the case of external
and shared nodes), and

the intersection over all the nodal sets of all the nodes contained in the collection
of node setsisin general not empty, asit may include nodal datathat has some
overlap, such as a node shared between processors that also has a boundary
condition associated with it.

Boundary Condition Data
A common example of anode set is a group of nodes satisfying a given boundary
condition. In general, boundary conditions utilized in finite-element analyses fall into
one of three fundamental categories:
essential boundary conditions, where a particular nodal value of the solution
parameter must be enforced,

natural boundary conditions, where an applied source or load term (in general, the
dual of the primary solution unknown) is added to the global load vector, and

mixed boundary conditions, that involve alinear combination of essential and
natural boundary specifications.

If the primary solution unknown (taken to be a scalar: if the solution is vector-valued,
this parameter should be taken as one component of the vector nodal solution) is
denoted by u, the dual of the solution (force as opposed to displacement, heat source
as opposed to temperature, etc.) is denoted by q, and the nodal values of these
solution parameters are indicated by a subscript j, then a generic boundary
specification can be given by:

au; +b;g; +9, =0
where a;, b;, and g are specified constants.

The table below specifies various values for the constants required to produce the
three fundamental types of boundary conditions.

essential a;' 0 b,=0 g arbitrary
natural a;=0 b* 0 g arbitrary
mixed a;* 0 b* 0 g arbitrary
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Appropriate values for these defining constants are passed for each solution
component in the node list through the alphaBCDataT able, betaBCDataT able,
and gammaBCDataT able arrays.

Constraints

Thefinal example of datato be passed to the solver viathe finite-element interface is
that of mathematical constraint relations utilized to implement such useful modeling
techniques as contact-impact schemes. These constraints can be cast in a generic
form involving weighted nodal summations, and two different schemes can be
realized for implementing these constraint equations:

Lagrange multipliers, where the constraint relation is appended to the finite-
element system of equations, is enforced exactly, and involves a new solution
parameter (i.e., the Lagrange multiplier) that is often of interest to the parent
finite-element program as a statical (i.e., the dual of kinematical, hence
representing aforce-like quantity) parameter that aids in implementation of the
constraint (e.g., aforce that enforces a specified displacement constraint).

Penalty formulations, where the underlying energy functional is augmented by a
penalty term that varies quadratically in the residual function corresponding to
the constraint. Note that penalty formulation constraints are seldom satisfied
exactly, but instead are specified to a precision that is approximately related (in an
Inverse manner) to the size of the penalty number.

If an interface condition is specified for enforcement with a Lagrange multiplier
formulation, then a new row needs to be added to the finite-element equation set,
and a new equation parameter (namely the Lagrange multiplier used to enforce the
constraint) must be appended to the solution vector. The Lagrange multiplier
interface condition takes the following form:

NN number of nodes in constraint

u nodal solution parameters for each node in constraint
W, nodal solution weights for each node in constraint
f constant term required for constraint satisfaction

In order to use a Lagrange multiplier formulation for this constraint, aterm of the
following form is added to the finite-element energy functional:

X_
> (D\
ooz
1=
—
Ic
+
—_
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Minimizing (or more precisely, extremizing, as the addition of this constraint may
produce an indefinite system, even when the original finite-element analysis arose
from a strict minimization principle) the augmented functional resultsin a set of
equations that satisfy the algebraic constraint. It isworthwhile to recall that if any of
the nodes that define the constraint are not in the active node list, then they must be
classified as external nodes and appropriate initialization data passed so as to resolve
interprocessor communications i Ssues.

If aconstraint condition is specified for enforcement with a penalty formulation, then
(in general) no rows need to be added to the finite-element equation set, and an
especially simple penalty constraint can be applied at the assembled matrix level that
requires only minor modification of the sparsity structure of the assembled matrix.
The interface condition takes the same form as in the Lagrange multiplier case:

but this penalty constraint can be implemented by adding the following energy term
to the problem’ s strain energy functional:

2
awu; +f.
j=1

o

Here, the number p is taken to be alarge number (a“ penalty number”) that penalizes
the energy functional greatly for any lack of enforcement of the constraint relation.
Since the finite-element analysis corresponds to minimization of an appropriate
energy functional, if p istaken sufficiently large, then the constraint (or more
accurately, a good approximation of it) will automatically be satisfied by the resulting
augmented finite-element energy minimization.

é

>

N o

Asin the Lagrange multiplier case, if any nodes that define the constraint are not
active nodes for a given processor, then they must be considered external nodes for
that processor, and appropriate external node data must be passed. In addition, the
interface specification provides for various means of selecting the penalty parameter.

Other Constraint Considerations

Constraint data can be managed on either a blocked or an individual basis. A block
of constraints represents a series of nodal lists where the parameters that define the
constraint (i.e., the nodal weights and the number of nodes present in each
constraint) do not change over the various rows in the blocked constraint set. If itis
desired to hand constraints to the solver one constraint relation at a time, then the
notion of a constraint set can readily be degenerated down to a single constraint by
setting the number of constraints in a block equal to one.

As a specific example of how a constraint relation can be packaged in a generic form,
consider the transition region between quadratic and linear interpolation shown in
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the figure below. In this diagram, ablock of elements with quadratic variation of
displacement (and hence two unknowns per node) is to be tied to a block of similar
elements, except thislatter block uses alinear finite-element basis, and only four
nodes per element.
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Figure: Constraint Relations at Element Block Interface

In this example, the displacement field at nodes 101, 103, 105, and 107 should be
identical to that field defined at nodes 1, 2, 3, and 4. In addition, the displacements at
nodes 102, 104, and 106 should be constrained to be the average of the
displacements at the pairs of nodes given by (1, 2), (2,3), and (3,4). Theseresults can
be written in the following tabular forms, where u and v represent the x and y
components of displacement, respectively:

Uy = Uy Vi1 = V1
Uygz = U Vigz = Vs
Ugps = Us Vigs = V3
Ujor = Uy Vigr = Vy
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Uygp = (U + U2 Vg = (V; +V)/2
Uggy = (Upy + U2 Vg, = (V, + Vo)/2
Ue = (Ug + U2 Ve = (V3 +V,)/2

These fourteen individual constraints can be expressed in terms of two pairs of similar
constraint sets by loading up the arrays (as defined in the finite-element interface
header file) in the following manner:

Constraint on x-component of displacement at the common nodes

ICNodeTable;

101
103
105
107

~AWNPE

ICWeightTable:

1.0 0.0
-1.0 0.0

ICVauelist:

Note that the same weights are used for each individual constraint, and that the
number of rows of the weight array equals the number of columns of the node table
(in order to make the product of the nodal unknowns by the weights conformable
when there is more than one solution unknown at each node).

For the y-component of displacement, the only change isto the ICWeightTable array,
which takes the following form:

0.0 10
0.0 -1.0

To summarize, the rows of the node table represents the individual node IDs
associated with each constraint. The columns of the weight table represent the
weights applied to each node in a given constraint. The length of the weight table's
rows (i.e., the number of columns when each row has the same length) corresponds
to the number of solution unknowns defined at each associated node.

Constraint on x-component of displacement at the midside nodes
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ICNodeTable:

102 1 2

104 2 3

106 3 4
ICWeightTable:

1.0 0.0

-0.5 0.0

-0.5 0.0
ICValueligt:

0.0

0.0

0.0

Note that the same weights are used for each individual constraint, and that the
number of rows of the weight array equals the number of columns of the node table
(in order to make the product of the nodal unknowns by the weights conformable
when there is more than one solution unknown at each node).

For the y-component of displacement at the midside nodes, the only change isto the
ICWeightTable array, which takes the following form:

0.0 1.0
0.0 -0.5
0.0 -0.5

Solution Return Issues

The process of advising the algebraic solution modul e to solve the resulting system
of finite-element equations is completely dependent on the particular solver module
used (e.g., in this prototypical case, utilizing the |SIS++ parallel solver library).
Details on the specifics of communicating with the solver package through the FE-
LA solver interface are best found by studying the User’s Manual for the particular
solver package of interest.

The most relevant generic (i.e., solver-independent) concepts arise in the solution
return process, when the solver library has constructed a solution to the finite-
element equations, and these solution components must be returned to the calling
finite-element program. It should be noted that currently, these solution components
fall into one of three distinct categories:

Draft Finite-Element Interface Support Document Page 27



nodal solution parameters that arise from solution unknowns computed for each
node in the processor active node list,

element solution parameters that are associated with blocks possessing local
element unknowns (i.e. ones that aren’t explicitly associated with anode lying in
the element interior, such as the discontinuous pressure-field nodes already
presented for use in incompressible solid and fluid mechanics problems), and

Lagrange multipliers arising from constraint conditions, where these solution
unknowns generally represent statical (i.e., force-like) quantities of interest to the
parent finite-element program.

Each of these aggregations of solution data is represented by one or more solution
return methods provided by the FE-LA solver interface implementation. In particular,
the current specification calls for returning nodal solution parameters on the
following bases:

using the list of active nodes associated with a given block to identify and return
all the solution parameters associated with a given block,

using the list of al elements associated with a given block to identify and return
the blocked elemental solution unknowns, and

returning Lagrange multipliers on either a whole-processor basis, or by their
aggregation into solution parameters associated with a specific contraint set.

Other solution return functions for specialized applications will be considered in the
future according to both demand and the degree of difficulty of implementation. In
all cases, the current interface specification is taken to represent a core function set
for passing data between the distinct FE-LA modules, and extensions to this base
feature set can readily be made to accommodate future demands, as the interface
specification isintended to be sufficiently extensible so as to permit growth over its
lifespan, as finite-element, solver, and computer technol ogies evolve with time.

Sample Problems in the Current Specification Distribution

There are several sample data files used to test the current interface implementation,
and these sample files can be found using links from the | SIS++ home page on the
Sandia/Livermore web site (contact rlclay@ca.sandia.gov for details, as some of these
sample problems may have only interim documentation available initially). Pictures
and a brief description of the sample problems are given below, in terms of which
aspects of the interface implementation each dataset exercises.

Thermal Sample Problem

The thermal sample problem isasimple 2D bar composed of two dissimilar materials
that are meshed with non-conforming topology, and then joined using two different
constraint sets. This problem exercises several code segments in the prototype
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implementation, including handling of essential and natural boundary conditions, and
the use of Lagrange multiplier constraint set components.

mesh limits:
xmin 0.0000E+00

xmax 5.0000E+00

4 8 12 16 20 24 ymin 0.0000E+00
3 7 11 15 19 23

2 6 10 14 18 >2 ymax 1.0000E+00
1 5 9 13 17 21 |  mmmmmmmem e

status data:

nodes used 35
elements 24
Figure: Therma Sample Problem Mesh
temperatures

min 0.000E+00
max 1.688E+01

+1.8000E+01
+1.7250E+01
+1.6500E+01
+1.5750E+01
+1.5000E+01
+1.4250E+01
+1.3500E+01
+1.2750E+01
+1.2000E+01
+1.1250E+01
+1.0500E+01
+9.7500E+00
+9.0000E+00
+8.2500E+00
+7.5000E+00
+6.7500E+00
+6.0000E+00
+5.2500E+00
+4 .5000E+00
+3.7500E+00
+3.0000E+00
+2.2500E+00
+1.5000E+00
+7.5000E-01
+0.0000E+00
-7.5000E-01

Figure: Thermal Sample Problem Results
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Self-Weight Sample Problem

The self-weight sample problem is aten-element uniform bar composed of 3D brick
elements. It represents a bar hanging under its own weight, and tests for vector-
valued solution logic, element assembly, and essential boundary-condition handling.
In addition, it formsthe basis for two more complicated problems that exercise other
components of the prototype implementation.

Max Prin Stress

min  2.887E-01

max 9.711E+00

- +1_.0000E+01

. +9.6000E+00
, 8 197 2000E+00
+8.8000E+00

+8.4000E+00

_ +8.0000E+00
+7 .6000E+00

+7 .2000E+00

: +6.8000E+00

. +6.4000E+00
//// +6-0000E+00

: +5_.6000E+00

+5.2000E+00
+4.8000E+00
+4.4000E+00
+4.0000E+00

+3.6000E+00
+3.2000E+00
+2.8000E+00
+2.4000E+00

+2.0000E+00
+1.6000E+00
+1.2000E+00
+8.0000E-01
+4 _0000E-01
+0.0000E+00

Figure: Self-Weight Sample Problem Mesh and Results

Constrained Self-Weight Sample Problem

The constrained self-weight sample problem represents the same problem used in the
self-weight case, but with a support at the bottom of the bar, modeled with asingle
very stiff (near-rigid) element added to the bottom of the mesh. This additional rigid
element causes the bottom of the bar to be supported, and the contact region
between the bar and the rigid block is modeled using Lagrange multiplier constraint
sets. This sample problem exercises many components of the constraint relation
implementation in the prototype, including the solution return functions, where the
computed Lagrange multiplier solution parameters represent the reaction forces
exerted on the bar by the confining base block.

This problem comes in two flavors: one with contiguous node numbering, and one
where the rigid block has nodes numbered in a manner with a gap between the
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numbering scheme for the bar and for the block. Thislatter case provides testing for
various globalNode-to-localNode lookup functions in the prototype.
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Figure: Constrained Self-Weight Sample Problem Geometry and Results

Three-Dimensional Stress Analysis Problem

Thislarger problem provides a sufficiently complicated sample problem to permit
code profiling of the prototype interface implementation. In addition, it represents
half of alarger (symmetric) problem that readily admits testing logic for shared and
external nodes in the distributed-memory setting, so it will be used extensively to test
scalable versions of the prototype implementation.
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Max Prin Stress

min 4_.423E-01
max 1.853E+00

+1.8600E+00
+1.8000E+00
+1.7400E+00
+1.6800E+00
+1.6200E+00
+1.5600E+00
+1.5000E+00
+1.4400E+00
+1.3800E+00
+1.3200E+00
+1.2600E+00
+1.2000E+00
+1.1400E+00
+1.0800E+00
+1.0200E+00
+9.6000E-01
+9.0000E-01
+8.4000E-01
+7.8000E-01
+7.2000E-01
+6.6000E-01
+6.0000E-01
+5.4000E-01
+4.8000E-01
+4.2000E-01
+3.6000E-01

Figure: 3D Stress Analysis Sample Problem Mesh and Results

Knee Joint Stress Analysis Problem

This even larger problem (approximately 12,000 equations) provides another
complicated sample problem to permit code profiling of the prototype interface
implementation. It tests all components of the prototype implementation except for
the constraint relation logic, and it is readily divided (thanks to the uniform
topological structure of the mesh) up into various domain decompositions for testing
the distributed-memory implementations of the FE-LA solver interface prototype.
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Figure: 3D Knee Joint Stress Analysis Sample Problem Mesh
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Figure: 3D Knee Joint Stress Analysis Sample Problem Results
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